Real-time monitoring procedures for early detection of bubbles
E.J. Whitehouse,
D.I. Harvey and
S.J. Leybourne
International Journal of Forecasting, 2025, vol. 41, issue 3, 1260-1277
Abstract:
Asset price bubbles and crashes can have severe consequences for the stability of financial and economic systems. Policymakers require timely identification of such bubbles in order to respond to their emergence. In this paper we propose new econometric procedures that improve the speed of detection for an emerging asset price bubble in real time. Our new monitoring procedures make use of alternative variance standardisations that are better able to capture the behaviour of the underlying process during a bubble phase. We derive asymptotic results to show that using these alternative variance standardisations does not increase the probability of false detection under the no-bubble (unit root) null hypothesis relative to existing procedures. However, Monte Carlo simulations demonstrate that much earlier detection becomes possible with our new procedures under the bubble (explosive autoregressive) alternative. Empirical applications to OECD housing markets and bitcoin prices show the value in terms of earlier detection of bubbles that our new procedures can achieve. In particular, we show that the United States housing bubble that preceded the global financial crisis could have been detected as early as 1999:Q1 by our new procedures.
Keywords: Real-time monitoring; Bubble; Explosive autoregression; Early warning signal; Housing markets (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016920702400133X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:3:p:1260-1277
DOI: 10.1016/j.ijforecast.2024.12.005
Access Statistics for this article
International Journal of Forecasting is currently edited by R. J. Hyndman
More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().