EconPapers    
Economics at your fingertips  
 

Forecasting macroeconomic data with Bayesian VARs: Sparse or dense? It depends!

Luis Gruber and Gregor Kastner

International Journal of Forecasting, 2025, vol. 41, issue 4, 1589-1619

Abstract: Vector autoregressions (VARs) are widely applied when it comes to modeling and forecasting macroeconomic variables. In high dimensions, however, they are prone to overfitting. Bayesian methods—more concretely, shrinkage priors—have been shown to be successful at improving prediction performance. In the present paper, we introduce the semi-global framework, in which we replace the traditional global shrinkage parameter with group-specific shrinkage parameters. We show how this framework can be applied to various shrinkage priors, such as global–local priors and stochastic search variable selection priors. We demonstrate the virtues of the proposed framework in an extensive simulation study and in an empirical application forecasting data on the US economy. Further, we shed more light on the ongoing ‘illusion of sparsity’ debate, finding that forecasting performances under sparse/dense priors vary across evaluated economic variables and across time frames. Dynamic model averaging, however, can combine the merits of both worlds.

Keywords: Density forecasting; Hierarchical priors; Illusion of sparsity; (Semi-)global–local shrinkage; Stochastic volatility (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0169207025000081
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:intfor:v:41:y:2025:i:4:p:1589-1619

DOI: 10.1016/j.ijforecast.2025.02.001

Access Statistics for this article

International Journal of Forecasting is currently edited by R. J. Hyndman

More articles in International Journal of Forecasting from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-09-30
Handle: RePEc:eee:intfor:v:41:y:2025:i:4:p:1589-1619