Nonlinearly weighted convex risk measure and its application
Zhiping Chen and
Li Yang
Journal of Banking & Finance, 2011, vol. 35, issue 7, 1777-1793
Abstract:
We propose a new class of risk measures which satisfy convexity and monotonicity, two well-accepted axioms a reasonable and realistic risk measure should satisfy. Through a nonlinear weight function, the new measure can flexibly reflect the investor's degree of risk aversion, and can control the fat-tail phenomenon of the loss distribution. A realistic portfolio selection model with typical market frictions taken into account is established based on the new measure. Real data from the Chinese stock markets and American stock markets are used for empirical comparison of the new risk measure with the expected shortfall risk measure. The in-sample and out-of-sample empirical results show that the new risk measure and the corresponding portfolio selection model can not only reflect the investor's risk-averse attitude and the impact of different trading constraints, but can find robust optimal portfolios, which are superior to the corresponding optimal portfolios obtained under the expected shortfall risk measure.
Keywords: Expected; shortfall; Market; frictions; Portfolio; optimization; Performance; ratio (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378426610004516
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jbfina:v:35:y:2011:i:7:p:1777-1793
Access Statistics for this article
Journal of Banking & Finance is currently edited by Ike Mathur
More articles in Journal of Banking & Finance from Elsevier
Bibliographic data for series maintained by Catherine Liu ().