Learning from a black box
Shaowei Ke,
Brian Wu and
Chen Zhao
Journal of Economic Theory, 2024, vol. 221, issue C
Abstract:
We introduce a learning model in which the decision maker does not know how recommendations are generated, called the contraction rule. We present behavioral postulates that characterize it. The contraction rule can be uniquely identified and reveals how the decision maker interprets and how much she trusts the recommendation. In a dynamic stationary setting, we show that the contraction rule is not dominated by completely following recommendations and is incompatible with a property called compliance with balanced recommendations. Following this negative result, we demonstrate that the contraction rule may generate and reinforce recency bias and disagreement.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0022053124000929
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jetheo:v:221:y:2024:i:c:s0022053124000929
DOI: 10.1016/j.jet.2024.105886
Access Statistics for this article
Journal of Economic Theory is currently edited by A. Lizzeri and K. Shell
More articles in Journal of Economic Theory from Elsevier
Bibliographic data for series maintained by Catherine Liu ().