Bootstrap confidence bands and partial linear quantile regression
Song Song,
Ritov, Ya’acov and
Wolfgang Härdle
Journal of Multivariate Analysis, 2012, vol. 107, issue C, 244-262
Abstract:
In this paper bootstrap confidence bands are constructed for nonparametric quantile estimates of regression functions, where resampling is done from a suitably estimated empirical distribution function (edf) for residuals. It is known that the approximation error for the confidence band by the asymptotic Gumbel distribution is logarithmically slow. It is proved that the bootstrap approximation provides an improvement. The case of multidimensional and discrete regressor variables is dealt with using a partial linear model. An economic application considers the labor market differential effect with respect to different education levels.
Keywords: Bootstrap; Quantile regression; Confidence bands; Nonparametric fitting; Kernel smoothing; Partial linear model (search for similar items in EconPapers)
JEL-codes: C14 C21 C31 J01 J31 J71 (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X12000218
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:107:y:2012:i:c:p:244-262
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2012.01.020
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().