Unified improvements in estimation of a normal covariance matrix in high and low dimensions
Hisayuki Tsukuma and
Tatsuya Kubokawa
Journal of Multivariate Analysis, 2016, vol. 143, issue C, 233-248
Abstract:
The problem of estimating a covariance matrix in multivariate linear regression models is addressed in a decision-theoretic framework. This paper derives unified dominance results under a Stein-like loss, irrespective of order of the dimension, the sample size and the rank of the regression coefficients matrix. Especially, using the Stein–Haff identity, we develop a key inequality which is useful for constructing a truncated and improved estimator based on the information contained in the sample means or the ordinary least squares estimator of the regression coefficients. Also, a quadratic loss-like function is used to suggest alternative improved estimators with respect to an invariant quadratic loss.
Keywords: High dimension; Inadmissibility; Invariant loss; Moore–Penrose inverse; Statistical decision theory (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X15002304
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:143:y:2016:i:c:p:233-248
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2015.09.016
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().