Gaussian and robust Kronecker product covariance estimation: Existence and uniqueness
I. Soloveychik and
D. Trushin
Journal of Multivariate Analysis, 2016, vol. 149, issue C, 92-113
Abstract:
We study the Gaussian and robust covariance estimation, assuming the true covariance matrix to be a Kronecker product of two lower dimensional square matrices. In both settings we define the estimators as solutions to the constrained maximum likelihood programs. In the robust case, we consider Tyler’s estimator defined as the maximum likelihood estimator of a certain distribution on a sphere. We develop tight sufficient conditions for the existence and uniqueness of the estimates and show that in the Gaussian scenario with the unknown mean, p/q+q/p+2 samples are almost surely enough to guarantee the existence and uniqueness, where p and q are the dimensions of the Kronecker product factors. In the robust case with the known mean, the corresponding sufficient number of samples is max[p/q,q/p]+1.
Keywords: Constrained covariance estimation; Robust estimation; High-dimensional estimation; Kronecker product structure (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300070
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:149:y:2016:i:c:p:92-113
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.04.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().