Conditioned limit laws for inverted max-stable processes
Ioannis Papastathopoulos and
Jonathan A. Tawn
Journal of Multivariate Analysis, 2016, vol. 150, issue C, 214-228
Abstract:
Max-stable processes are widely used to model spatial extremes. These processes exhibit asymptotic dependence meaning that the large values of the process can occur simultaneously over space. Recently, inverted max-stable processes have been proposed as an important new class for spatial extremes which are in the domain of attraction of a spatially independent max-stable process but instead they cover the broad class of asymptotic independence. To study the extreme values of such processes we use the conditioned approach to multivariate extremes that characterises the limiting distribution of appropriately normalised random vectors given that at least one of their components is large. The current statistical methods for the conditioned approach are based on a canonical parametric family of location and scale norming functions. We study broad classes of inverted max-stable processes containing processes linked to the widely studied max-stable models of Brown–Resnick and extremal-t, and identify conditions for the normalisations to either belong to the canonical family or not. Despite such differences at an asymptotic level, we show that at practical levels, the canonical model can approximate well the true conditional distributions.
Keywords: Asymptotic independence; Brown–Resnick process; Conditional extremes; Extremal-t process; Hüsler–Reiss copula; Inverted max-stable distribution; Spatial extremes (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300409
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:150:y:2016:i:c:p:214-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.06.001
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().