EconPapers    
Economics at your fingertips  
 

Extended likelihood approach to multiple testing with directional error control under a hidden Markov random field model

Donghwan Lee and Youngjo Lee

Journal of Multivariate Analysis, 2016, vol. 151, issue C, 1-13

Abstract: Current multiple testing procedures are often based on assumptions of independence of observations. However, the observations in genomics and neuroimaging are correlated and ignoring such a correlation can severely distort the conclusions of a test. Moreover, most tests investigate two-sided alternatives only as a two-action problem and do not worry about directional errors. Misspecifications in signs of effects should not be regarded as power. In this study, we derive an optimal multiple testing procedure to incorporate dependence among tests, controlling directional false discovery rates. Real data examples for gene expression and neuroimaging using hidden Markov random field models show that an appropriate model is crucial for the efficiency of tests. Proper modeling of the correlation structure and model selection tools in the likelihood approach enhance the performance of a test. Reporting the estimates of various error rates is useful for the test’s validity.

Keywords: Extended likelihood; False discovery rate; Hidden Markov random field model; Multiple testing; Type III error (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300458
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:151:y:2016:i:c:p:1-13

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2016.07.001

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:jmvana:v:151:y:2016:i:c:p:1-13