Adaptive global thresholding on the sphere
Claudio Durastanti
Journal of Multivariate Analysis, 2016, vol. 151, issue C, 110-132
Abstract:
This work is concerned with the study of the adaptivity properties of nonparametric regression estimators over the d-dimensional sphere within the global thresholding framework. The estimators are constructed by means of a form of spherical wavelets, the so-called needlets, which enjoy strong concentration properties in both harmonic and real domains. The author establishes the convergence rates of the Lp-risks of these estimators, focusing on their minimax properties and proving their optimality over a scale of nonparametric regularity function spaces, namely, the Besov spaces.
Keywords: Global thresholding; Needlets; Spherical data; Nonparametric regression; U-statistics; Besov spaces; Adaptivity (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300537
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:151:y:2016:i:c:p:110-132
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.07.009
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().