A proportional hazards model for time-to-event data with epidemiological bias
Qiaozhen Zhang,
Hongsheng Dai and
Bo Fu
Journal of Multivariate Analysis, 2016, vol. 152, issue C, 224-236
Abstract:
In hepatitis C virus (HCV) epidemiological studies, the estimation of progression to cirrhosis and prognostic effects of associated risk factors is of particular importance when projecting national disease burden. However, the progression estimates obtained from conventional methods could be distorted due to a referral bias (Fu et al., 2007). In recent years, several approaches have been developed to handle this epidemiological bias in analyzing time-to-event data. This paper proposes a new estimation approach for this problem under a semiparametric proportional hazards framework. The new method uses a martingale approach based on the mean rate function, rather than the traditional hazard rate function, and develops an iterative algorithm to estimate the Cox regression parameter and baseline hazard rate simultaneously. The consistency and asymptotic properties of the proposed estimators are derived theoretically and evaluated via simulation studies. The new method is also applied to a real HCV cohort study.
Keywords: Censoring; Martingale; Proportional hazards model; Referral bias; Truncation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16300677
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:152:y:2016:i:c:p:224-236
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.08.003
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().