An offspring of multivariate extreme value theory: The max-characteristic function
Michael Falk and
Gilles Stupfler
Journal of Multivariate Analysis, 2017, vol. 154, issue C, 85-95
Abstract:
This paper introduces max-characteristic functions (max-CFs), which are an offspring of multivariate extreme-value theory. A max-CF characterizes the distribution of a random vector in Rd, whose components are nonnegative and have finite expectation. Pointwise convergence of max-CFs is shown to be equivalent to convergence with respect to the Wasserstein metric. The space of max-CFs is not closed in the sense of pointwise convergence. An inversion formula for max-CFs is established.
Keywords: Multivariate extreme-value theory; Max-characteristic function; Wasserstein metric; Convergence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X16301191
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:154:y:2017:i:c:p:85-95
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.jmva.2016.10.007
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().