EconPapers    
Economics at your fingertips  
 

Quantization and clustering on Riemannian manifolds with an application to air traffic analysis

Alice Le Brigant and Stéphane Puechmorel

Journal of Multivariate Analysis, 2019, vol. 173, issue C, 685-703

Abstract: The goal of quantization is to find the best approximation of a probability distribution by a discrete measure with finite support. When dealing with empirical distributions, this boils down to finding the best summary of the data by a smaller number of points, and automatically yields a K-means-type clustering. In this paper, we introduce Competitive Learning Riemannian Quantization (CLRQ), an online quantization algorithm that applies when the data does not belong to a vector space, but rather a Riemannian manifold. It can be seen as a density approximation procedure as well as a clustering method. Compared to many clustering algorithms, it requires few distance computations, which is particularly computationally advantageous in the manifold setting. We prove its convergence and show simulated examples on the sphere and the hyperbolic plane. We also provide an application to real data by using CLRQ to create summaries of images of covariance matrices estimated from air traffic images. These summaries are representative of the air traffic complexity and yield clusterings of the airspaces into zones that are homogeneous with respect to that criterion. They can then be compared using discrete optimal transport and be further used as inputs of a machine learning algorithm or as indexes in a traffic database.

Keywords: Air traffic analysis; Clustering; Optimal quantization; Riemannian geometry (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X18303361
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2019.05.008

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:173:y:2019:i:c:p:685-703