EconPapers    
Economics at your fingertips  
 

Deconvolution density estimation on Lie groups without auxiliary data

Jeong Min Jeon

Journal of Multivariate Analysis, 2025, vol. 209, issue C

Abstract: In this paper, we study density estimation on a general Lie group when data contain measurement errors and the distribution of measurement error is unknown. We estimate the target density without additional observations, such as an observable random sample from the measurement error distribution or repeated measurements. To achieve this, we take a semiparametric approach assuming that the measurement error distribution belongs to a parametric family. We also discuss maximum likelihood estimation for the case where the target density is also parametric. We establish the identifiability of a measurement error model and derive various asymptotic properties for our estimators. The performance of our estimators is demonstrated via simulation studies.

Keywords: Deconvolution; Density estimation; Lie group; Measurement error (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047259X25000594
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:209:y:2025:i:c:s0047259x25000594

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.jmva.2025.105464

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-07-15
Handle: RePEc:eee:jmvana:v:209:y:2025:i:c:s0047259x25000594