Minimal Moments and Cumulants of Symmetric Matrices: An Application to the Wishart Distribution
T. Kollo and
D. Vonrosen
Journal of Multivariate Analysis, 1995, vol. 55, issue 2, 149-164
Abstract:
An algorithm is proposed and notions defined to determine the minimal sets of all possible higher order moments and cumulants of a random vector or a random matrix. The main attention has been paid to the case of symmetric matrices. Using the introduced notions, cumulants of arbitrary order for the Wishart distribution have been obtained.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71072-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:55:y:1995:i:2:p:149-164
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().