Bayesian Analysis for Random Coefficient Regression Models Using Noninformative Priors
R. Y. Yang
Journal of Multivariate Analysis, 1995, vol. 55, issue 2, 283-311
Abstract:
We apply Bayesian approach, through noninformative priors, to analyze a Random Coefficient Regression (RCR) model. The Fisher information matrix, the Jeffreys prior and reference priors are derived for this model. Then, we prove that the corresponding posteriors are proper when the number of full rank design matrices are greater than or equal to twice the number of regression coefficient parameters plus 1 and that the posterior means for all parameters exist if one more additional full rank design matrix is available. A hybrid Markov chain sampling scheme is developed for computing the Bayesian estimators for parameters of interest. A small-scale simulation study is conducted for comparing the performance of different noninformative priors. A real data example is also provided and the data are analyzed by a non-Bayesian method as well as Bayesian methods with noninformative priors.
Date: 1995
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71080-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:55:y:1995:i:2:p:283-311
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().