Penalized Likelihood-type Estimators for Generalized Nonparametric Regression
Dennis D. Cox and
Finbarr O'Sullivan
Journal of Multivariate Analysis, 1996, vol. 56, issue 2, 185-206
Abstract:
We consider the asymptotic analysis of penalized likelihood type estimators for generalized nonparametric regression problems in which the target parameter is a vector-valued function defined in terms of the conditional distribution of a response given a set of covariates. A variety of examples including ones related to generalized linear models and robust smoothing are covered by the theory. Linear approximations to the estimator are constructed using Taylor expansions in Hilbert spaces. An application which is treated is upper bounds on rates of convergence for the penalized likelihood-type estimators.
Keywords: maximum; penalized; likelihood; non-parametric; aggression; multiple; classification; smoothing; splines; rates; of; convergence; (null) (search for similar items in EconPapers)
Date: 1996
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(96)90010-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:56:y:1996:i:2:p:185-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().