Asymptotic Properties of Backfitting Estimators
Jean D. Opsomer
Journal of Multivariate Analysis, 2000, vol. 73, issue 2, 166-179
Abstract:
When additive models with more than two covariates are fitted with the backfitting algorithm proposed by Buja et al. [2], the lack of explicit expressions for the estimators makes study of their theoretical properties cumbersome. Recursion provides a convenient way to extend existing theoretical results for bivariate additive models to models of arbitrary dimension. In the case of local polynomial regression smoothers, recursive asymptotic bias and variance expressions for the backfitting estimators are derived. The estimators are shown to achieve the same rate of convergence as those of univariate local polynomial regression. In the case of independence between the covariates, non-recursive bias and variance expressions, as well as the asymptotically optimal values for the bandwidth parameters, are provided.
Keywords: additive model; local polynomial regression; optimal rates; existence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(99)91868-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:73:y:2000:i:2:p:166-179
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().