Laplace approximations to hypergeometric functions of two matrix arguments
Ronald W. Butler and
Andrew T.A. Wood
Journal of Multivariate Analysis, 2005, vol. 94, issue 1, 1-18
Abstract:
We present a unified approach to Laplace approximation of hypergeometric functions with two matrix arguments. The general form of the approximation is designed to exploit the Laplace approximations to hypergeometric functions of a single matrix argument presented in Butler and Wood (Ann. Statist. 30 (2002) 1155, Laplace approximations to Bessel functions of matrix argument, J. Comput. Appl. Math. 155 (2003) 359) which have proved to be very accurate in a variety of settings. All but one of the approximations presented here appear to be new. Numerical accuracy is investigated in a number of statistical applications.
Keywords: Asymptotic; approximation; Eigenvalue; distribution; Matrix-argument; hypergeometric; function; Laplace; approximation (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00113-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:94:y:2005:i:1:p:1-18
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().