EconPapers    
Economics at your fingertips  
 

On the block thresholding wavelet estimators with censored data

Linyuan Li

Journal of Multivariate Analysis, 2008, vol. 99, issue 8, 1518-1543

Abstract: We consider block thresholding wavelet-based density estimators with randomly right-censored data and investigate their asymptotic convergence rates. Unlike for the complete data case, the empirical wavelet coefficients are constructed through the Kaplan-Meier estimators of the distribution functions in the censored data case. On the basis of a result of Stute [W. Stute, The central limit theorem under random censorship, Ann. Statist. 23 (1995) 422-439] that approximates the Kaplan-Meier integrals as averages of i.i.d. random variables with a certain rate in probability, we can show that these wavelet empirical coefficients can be approximated by averages of i.i.d. random variables with a certain error rate in L2. Therefore we can show that these estimators, based on block thresholding of empirical wavelet coefficients, achieve optimal convergence rates over a large range of Besov function classes , p>=2, q>=1 and nearly optimal convergence rates when 1

Keywords: Adaptive; estimation; Besov; spaces; Block; thresholding; Censored; data; Density; estimation; Minimax; estimation; Nonlinear; wavelet-based; estimator; Rates; of; convergence (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00015-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:8:p:1518-1543

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Journal of Multivariate Analysis is currently edited by de Leeuw, J.

More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jmvana:v:99:y:2008:i:8:p:1518-1543