Diagnostic checking for multivariate regression models
Lixing Zhu,
Ruoqing Zhu and
Song Song
Journal of Multivariate Analysis, 2008, vol. 99, issue 9, 1841-1859
Abstract:
Diagnostic checking for multivariate parametric models is investigated in this article. A nonparametric Monte Carlo Test (NMCT) procedure is proposed. This Monte Carlo approximation is easy to implement and can automatically make any test procedure scale-invariant even when the test statistic is not scale-invariant. With it we do not need plug-in estimation of the asymptotic covariance matrix that is used to normalize test statistic and then the power performance can be enhanced. The consistency of NMCT approximation is proved. For comparison, we also extend the score type test to one-dimensional cases. NMCT can also be applied to diverse problems such as a classical problem for which we test whether or not certain covariables in linear model has significant impact for response. Although the Wilks lambda, a likelihood ratio test, is a proven powerful test, NMCT outperforms it especially in non-normal cases. Simulations are carried out and an application to a real data set is illustrated.
Keywords: 62H15; 62G09; 62G20; Multivariate; regression; model; Goodness-of-fit; Wilks; lambda; Score; tests; Nonparametric; Monte; Carlo; approximation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00029-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jmvana:v:99:y:2008:i:9:p:1841-1859
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Journal of Multivariate Analysis is currently edited by de Leeuw, J.
More articles in Journal of Multivariate Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().