Conservative linear programming with mixed multiple objectives
Al Soyster,
Ben Lev () and
Di Toof
Omega, 1977, vol. 5, issue 2, 193-205
Abstract:
In an ordinary linear program a single objective vector is constructed and one attempts to choose a decision vector to optimize this objective. Often multiple criteria exist or exact estimates for the components of a single objective vector are not entirely clear. For these cases a conservative decision-maker may want to choose an alternative that maximizes the objective value under the worst foreseeable circumstances. Herein we develop a unified framework for applying the maximin criterion to problems with various degrees of uncertainty attached to the objective vector. Three cases are solved via linear programming: (1) Complete Information, (2) Partial Information, and (3) Total Ignorance. It is shown that the functional value of the maximin solution decreases in a convex manner with increasing uncertainty. In addition certain relationships between maximin and efficient solutions are provided. Finally, an extension to integer constrained decision variables is presented.
Date: 1977
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0305-0483(77)90102-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:jomega:v:5:y:1977:i:2:p:193-205
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Omega is currently edited by B. Lev
More articles in Omega from Elsevier
Bibliographic data for series maintained by Catherine Liu ().