EconPapers    
Economics at your fingertips  
 

Ex-post environmental and traffic assessment of a speed reduction strategy in Madrid's inner ring-road

Fiamma Perez-Prada and Andres Monzon

Journal of Transport Geography, 2017, vol. 58, issue C, 256-268

Abstract: Since urban traffic is a major source of CO2 and NOx emissions, cities play a key role averting climate change and combating air pollution. Most researchers agree on the need of designing comprehensive mitigation strategies instead of applying isolated measures. Nevertheless, it is important to understand the specific impact and scope of each measure to look for the most effective synergies among them. In 2004, the Madrid City Council launched a plan to re-design its inner ring-road to move traffic out of the city centre. For safety reasons the planned speed limit for the full-renovated South-West section was finally reduced from 90km/h to 70km/h. Besides contributing to traffic safety, this strategy could also be seen as positive to the environment due to the associated reduced fuel consumption and lower emissions. However, lower speed limits have lower rates of community acceptance due to its impact on average travel times at the individual level. This paper conducts an ex-post evaluation of this speed reduction strategy to explore its environmental and traffic performance impacts. The results support the thesis that, in this velocity range, lower speed limits present important opportunities for reducing GHG and air pollution in the section affected by the measure, without substantially altering traffic performance. The implementation of the new speed limit policy produces a 14.4% and 16.4% reduction in CO2 and NOx emissions respectively, while global travel time remains virtually constant and the saturation rate decreases slightly. Besides, this cost-effective measure reveals great potential to reduce air pollution in highly populated urban areas located next to urban highways. This work provides local policy makers and city managers with useful insights regarding potential co-benefits of traffic optimization and speed reduction management to reduce mobile source emissions in urban environments.

Keywords: Traffic speed management; CO2 reduction; NOx reduction; Urban air pollution; Speed limits; Traffic operations; Traffic performance; Travel times; Emissions; Scenarios (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0966692316302332

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jotrge:v:58:y:2017:i:c:p:256-268

DOI: 10.1016/j.jtrangeo.2016.12.018

Access Statistics for this article

Journal of Transport Geography is currently edited by Frank Witlox

More articles in Journal of Transport Geography from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-09
Handle: RePEc:eee:jotrge:v:58:y:2017:i:c:p:256-268