Evolutionary game analysis of stakeholder privacy management in the AIGC model
Yali Lv,
Jian Yang,
Xiaoning Sun and
Huafei Wu
Operations Research Perspectives, 2025, vol. 14, issue C
Abstract:
The technological development powered by Artificial Intelligence Generated Content (AIGC) models, exemplified by Generative Pre-trained Transformer 4 (GPT-4) and Bidirectional Encoder Representations from Transformers (BERT), has completely transformed machine language processing and fostered substantial technological advancements. However, their extensive deployment has amplified concerns regarding data privacy risks, which are attributed not only to technological vulnerabilities but also to the intricate conflicts of interest among model providers, application service providers, and privacy regulators. To tackle this challenge, this research develops a tripartite evolutionary game model that examines the strategic interactions and dynamic relationships among large language model providers, application service providers, and privacy regulatory agencies. By employing replicator dynamic equations and Jacobian matrices, the research investigates the stability of strategic equilibria and simulates optimal adjustment paths across diverse policy scenarios. Drawing on the research findings, this paper offers practical recommendations to strengthen data privacy protection in large language models, delivering a solid theoretical foundation for policymakers and industry practitioners.
Keywords: AIGC; Data privacy; Evolutionary game; Replicator dynamic equations (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S221471602500003X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:oprepe:v:14:y:2025:i:c:s221471602500003x
DOI: 10.1016/j.orp.2025.100327
Access Statistics for this article
Operations Research Perspectives is currently edited by Rubén Ruiz Garcia
More articles in Operations Research Perspectives from Elsevier
Bibliographic data for series maintained by Catherine Liu ().