Aluminium for the future: Modelling the global production, market supply, demand, price and long term development of the global reserves
Harald U. Sverdrup,
Kristin Vala Ragnarsdottir and
Deniz Koca
Resources, Conservation & Recycling, 2015, vol. 103, issue C, 139-154
Abstract:
The reserves, production from mines, supply of aluminium to society and mass fluxes of aluminium in society was assessed using an integrated systems dynamics model (ALUMINIUM) in order to reconstruct the past and investigate potential future scenarios. The investigations for input data show that the mineable aluminium reserves are large, but finite. We get an average value for the ultimately recoverable reserve to be about 20–25 billion ton aluminium. The production of aluminium at present is 50 million ton per year. Continuing business-as-usual consumption with sustained global population growth above 7 billion people combined with a decline in cheap fossil fuels, aluminium may in the long perspective be a more expensive product than today. Should the event of a need for substituting a significant part of copper, iron, steel and stainless steel with aluminium arise, the time to scarcity for aluminium could become an issue within the next four decades. Ultimately, continuation of the aluminium production may in the future become limited by access to energy. Whereas aluminium primary production may go through a peak in the next decades, supply to society will not reach a peak before the end of the century, because of recycling from the stock in society. The model suggests that the supply level will decline to 2014 level sometime around 2250, or 230 years into the future.
Keywords: Aluminium; Mining; Systems dynamics; Reserves; Price (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344915300276
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:103:y:2015:i:c:p:139-154
DOI: 10.1016/j.resconrec.2015.06.008
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().