EconPapers    
Economics at your fingertips  
 

The economic conditions for urban infrastructure mining: Using GIS to prospect hibernating copper stocks

Björn Wallsten, Dick Magnusson, Simon Andersson and Joakim Krook

Resources, Conservation & Recycling, 2015, vol. 103, issue C, 85-97

Abstract: In this article, we suggest a methodology that combines geographic information systems (GIS) and material flow analysis (MFA) into a secondary reserve-prospecting tool. The approach is two-phased and couples spatially informed size estimates of urban metal stocks (phase 1) to the equally spatially contingent efforts required to extract them (phase 2). Too often, even the most advanced MFA assessments stop at the first of these two phases, meaning that essential information needed to facilitate resource recovery, i.e., urban mining, is missing from their results. To take MFA one step further, our approach is characterized by a high resolution that connects the analysis of the stock to the social practices that arrange material flows in the city, thereby enabling an assessment of the economic conditions for secondary resource recovery.

Keywords: Urban mining; Hibernating stocks; Infrastructure; Material flow analysis; GIS; Economic assessment (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344915300586
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:103:y:2015:i:c:p:85-97

DOI: 10.1016/j.resconrec.2015.07.025

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:103:y:2015:i:c:p:85-97