EconPapers    
Economics at your fingertips  
 

Industrial ecology-based strategies to reduce the embodied CO2 of magnesium metal

Gui-Rok Kwon, Seung H. Woo and Seong-Rin Lim

Resources, Conservation & Recycling, 2015, vol. 104, issue PA, 206-212

Abstract: Light-weight magnesium metal is used to displace heavy-weight steel and iron in automobiles and decrease CO2 emissions in the vehicle operation stage. This benefit is, however, significantly offset by CO2 emissions from high energy consumption in the magnesium production process. Thus, this study presents and assesses CO2 reduction strategies to mitigate the drawbacks of magnesium metal, based on the concepts of industrial ecology: industrial symbiosis with cement plant to utilize waste slag from magnesium production; industrial and urban symbiosis to utilize waste energy from urban area; and environmental supply chain management to purchase a feedstock with lower carbon footprint. These strategies can be used to reduce the embodied CO2 of magnesium metal by 5%, 31%, and 9%, respectively, compared to that of an existing magnesium metal. The industrial ecology-based strategies can be applied to produce low-carbon products and mitigate climate change.

Keywords: Climate change; Low-carbon material; Industrial ecology; Industrial and urban symbioses; Magnesium metal (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344915300689
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:104:y:2015:i:pa:p:206-212

DOI: 10.1016/j.resconrec.2015.08.008

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:104:y:2015:i:pa:p:206-212