Phosphorus in Denmark: National and regional anthropogenic flows
Manfred Klinglmair,
Camilla Lemming,
Lars Stoumann Jensen,
Helmut Rechberger,
Thomas Fruergaard Astrup and
Charlotte Scheutz
Resources, Conservation & Recycling, 2015, vol. 105, issue PB, 311-324
Abstract:
Substance flow analyses (SFA) of phosphorus (P) have been examined on a national or supra-national level in various recent studies. SFA studies of P on the country scale or larger can have limited informative value; large differences between P budgets exist within countries and are easily obscured by country-wide average values. To quantify and evaluate these imbalances we integrated a country-scale and regional-scale model of the Danish anthropogenic P flows and stocks. We examine three spatial regions with regard to agriculture, as the main driver for P use, and waste management, the crucial sector for P recovery. The regions are characterised by their differences in agricultural practice, population and industrial density. We show considerable variation in P flows within the country. First, these are driven by agriculture, with mineral fertiliser inputs varying between 3 and 5kgha−1yr−1, and animal feedstuff inputs between 5 and 19kgha−1yr−1. We identified surpluses especially in areas with a larger proportion of animal husbandry, owing to additional application of manure in excess of crop P demand. However, redistribution of the large amounts of P in manure is not feasible owing to transport limitations. Second, waste management, closely linked to population and industrial density is the driver behind differences in recoverable P flows. Current amounts of potentially recoverable P cannot change the reliance on primary P. The most immediate P re-use potential exists in the areas around the eastern urban agglomerations, from more complete recovery of sewage sludge (with unrecovered P amounts of up to 33% of P in current mineral fertiliser imports) and the biowaste fraction in municipal solid waste currently not collected separately (24% of P in current mineral fertiliser imports), since this region shows both the highest proportion of crop production and fertiliser use and lowest soil P budget.
Keywords: Substance flow analysis; Material flow analysis; Phosphorus; Denmark; Waste management; Agriculture; Resource management (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344915300963
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:105:y:2015:i:pb:p:311-324
DOI: 10.1016/j.resconrec.2015.09.019
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().