EconPapers    
Economics at your fingertips  
 

Environmental performance evaluation of different municipal solid waste management scenarios in China

Yili Liu, Peixuan Xing and Jianguo Liu

Resources, Conservation & Recycling, 2017, vol. 125, issue C, 98-106

Abstract: Currently, the overwhelming majority of municipal solid waste (MSW) has been treated in sanitary landfills and incineration plants in China. In future, with the popularization of separate waste collection, it is logical to treat the biodegradable components using biological treatment technologies. To determine the advantages and disadvantages of each waste management strategy, both life-cycle inventory analysis and impact assessment are applied. The advantages and disadvantages of each waste management strategy is evaluated using environmental performances of these management methods on multi-dimensions as waste reduction, stabilization, material recovery, energy recovery, and greenhouse gas (GHG) reductions. These results showed that the scenarios of raw MSW landfilling would result in minimal waste reduction (34.8%) and stabilization (87.8%) rate as well as significant amounts of GHG emissions (116.7–192.2kg-CO2Eq/t). On the other hand, the incineration scenario exhibited significant superiorities on these dimensions with a 79.2% reduction rate, 100% stabilization rate, and 124.3kg-CO2Eq/t GHG reduction. Moreover, 1163.1MJ/t of electricity could be recovered from the incineration process. The unique advantage of these scenarios with separated biodegradable components treated by biological methods was the land application of the biological treated residue. A maximum of 89.3kg/t or 122.0kg/t material could be recovered when composting or anaerobic digestion (AD) of the biodegradable fractions with incineration of the high calorific value components (HCVCs), followed by residue landfilling. However, when the waste-generated bio-fertilizer could not be applied by field, these waste management scenarios with classified treatment would yield less competitive benefits in each evaluation dimension.

Keywords: Municipal solid waste (MSW); Landfilling; Incineration; Composting; Anaerobic digestion (AD); Life cycle inventory (LCI) (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344917301581
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:125:y:2017:i:c:p:98-106

DOI: 10.1016/j.resconrec.2017.06.005

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:125:y:2017:i:c:p:98-106