EconPapers    
Economics at your fingertips  
 

Estimation of resource savings due to fly ash utilization in road construction

Subodh Kumar and C.B. Patil

Resources, Conservation & Recycling, 2006, vol. 48, issue 2, 125-140

Abstract: A methodology for estimation of natural resource savings due to fly ash utilization in road construction in India is presented. Analytical expressions for the savings of various resources namely soil, stone aggregate, stone chips, sand and cement in the embankment, granular sub-base (GSB), water bound macadam (WBM) and pavement quality concrete (PQC) layers of fly ash based road formation with flexible and rigid pavements of a given geometry have been developed. The quantity of fly ash utilized in these layers of different pavements has also been quantified. In the present study, the maximum amount of resource savings is found in GSB followed by WBM and other layers of pavement. The soil quantity saved increases asymptotically with the rise in the embankment height. The results of financial analysis based on Indian fly ash based road construction cost data indicate that the savings in construction cost decrease with the lead and the investment on this alternative is found to be financially attractive only for a lead less than 60 and 90km for flexible and rigid pavements, respectively.

Keywords: Resource savings; Road construction; Embankment; Pavements; Cost analysis (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344906000103
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:48:y:2006:i:2:p:125-140

DOI: 10.1016/j.resconrec.2006.01.002

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:48:y:2006:i:2:p:125-140