Removal of cement mortar remains from recycled aggregate using pre-soaking approaches
Vivian W.Y. Tam,
C.M. Tam and
K.N. Le
Resources, Conservation & Recycling, 2007, vol. 50, issue 1, 82-101
Abstract:
With a rising tide of adoption of recycled aggregate (RA) for construction, investigation on ways to improve the quality of RA has been overwhelming. The adoption of RA brings benefits including savings in the limited landfill spaces and the use of natural resources. However, the poorer quality of RA often limits its utilization to low grade applications such as sub-grade activities, filling materials and low grade concrete. The major reason that affects the quality of RA is the large amount of cement mortar remains on the surface of the aggregate, resulting in higher porosity, water absorption rates and thus a weaker interfacial zone between new cement mortar and aggregates, which weakens the strength and mechanical performance of concrete made from RA. This paper attempts to study three pre-soaking treatment approaches; namely ReMortarHCl, ReMortarH2SO4 and ReMortarH3PO4 in reducing the mortar attached to RA. The results show that the behaviour of RA has improved with reduction in water absorption, without simultaneous exceeding the limits of chloride and sulphate compositions after the treatment. This work has also compared the compressive strength, flexural strength and modulus of elasticity of concrete made from the approaches, which shows marked improvements in quality when compared with those using traditional approaches.
Keywords: Pre-soaking treatment; Recycled aggregate; Recycled aggregate concrete; Construction (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344906001431
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:50:y:2007:i:1:p:82-101
DOI: 10.1016/j.resconrec.2006.05.012
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().