Properties and microstructure of lightweight aggregate produced from lignite coal fly ash and recycled glass
Ioanna Kourti and
Christopher R. Cheeseman
Resources, Conservation & Recycling, 2010, vol. 54, issue 11, 769-775
Abstract:
The effect of glass addition on the processing, physical properties and microstructure of lightweight aggregate made from lignite coal fly ash from the Megalopolis power station in Greece has been investigated. Fly ash/glass mixes have been rapidly sintered at temperatures between 1040 and 1120°C in a rotary furnace, and the density, water absorption and pellet strength determined. Sintering 60:40 fly ash:waste glass mixes at 1120°C produced lightweight aggregate with a mean density of 1.35g/cm3, water absorption of ∼16% and crushing strength of 7.3MPa. Major crystalline phases in sintered materials were quartz (SiO2), albite (NaAlSi3O8), moissanite (SiC), hematite (Fe2O3), wollastonite (CaSiO3) and diopside (CaMg(Si2O6)). The work indicates that Megalopolis fly ash combined with waste glass can be used to manufacture lightweight aggregate with properties comparable to commercially available products. Fly ash and glass are potential resources that are currently waste materials in Greece. The processing involving pelletising and sintering in a rotary kiln is similar to that required for other commercially available lightweight aggregates manufactured from shales, clays and slate, and therefore processing costs are expected to be similar. However, avoiding the costs and environmental impacts associated with importing lightweight aggregate or using pumice makes the production of FA/glass lightweight aggregate a viable option.
Keywords: Lightweight aggregate; Fly ash; Sintering; Glass; Coal combustion products; Lignite (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344909002857
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:54:y:2010:i:11:p:769-775
DOI: 10.1016/j.resconrec.2009.12.006
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().