Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry
Matthew J. Eckelman
Resources, Conservation & Recycling, 2010, vol. 54, issue 4, 256-266
Abstract:
Nickel is an integral material to our modern, high-performance technological society. With increasing emphasis being put on energy efficiency and global climate change, it is important for companies to understand in detail the energy use and greenhouse gas implications of their business. The present analysis is a facility-level life-cycle assessment of these twin impacts covering the entire global nickel industry. Cradle-to-gate results (including extraction, production, and fabrication) are presented here for selected nickel and nickel alloy products, including upstream energy required for fuel production. Stainless steel is one of the most highly recycled metals in the world. In order to assess the energy and carbon implications of secondary material use, recycling scenarios for three grades of stainless steel (AISI 304, 409, and 430) were considered. Using the current scenario as a baseline, maximum use of scrap (within technical limits) and all-virgin production results varied widely. Smelting/Class II refining was the most energy intensive step of production, accounting for 50–90% of total primary energy use. Transport contributed 2–11% of the total, depending on the nickel product considered. A sensitivity analysis revealed that the results are highly dependent on the energy requirements for upstream fuel production, which apply to all steps of the assessment. These results will help the nickel industry navigate energy and climate change concerns in the coming years.
Keywords: Nickel production; Ferronickel; Nickel pig iron; Nickel oxide; Stainless steel; Life-cycle assessment; Primary energy; Greenhouse gas emissions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344909001852
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:54:y:2010:i:4:p:256-266
DOI: 10.1016/j.resconrec.2009.08.008
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().