Biohydrogen production by Rhodobacter capsulatus on acetate at fluctuating temperatures
Ebru Özgür,
Basar Uyar,
Yavuz Öztürk,
Meral Yücel,
Ufuk Gündüz and
Inci Eroğlu
Resources, Conservation & Recycling, 2010, vol. 54, issue 5, 310-314
Abstract:
Hydrogen is a clean energy alternative to fossil fuels. Photosynthetic bacteria produce hydrogen from organic compounds under anaerobic, nitrogen-limiting conditions through a light-dependent electron transfer process. In this study, the hydrogen production efficiency of phototrophic bacteria, Rhodobacter capsulatus and its Hup mutant strain (an uptake hydrogenase deleted strain) were tested on different initial acetate concentrations at fluctuating temperatures with indoor and outdoor photobioreactors. Acetate was effectively metabolized and H2 was produced at a high rate. Increasing the initial acetate concentration resulted in a shift in the utilization kinetics of acetate from first order to second order. The effects of fluctuating temperature and day/night cycles on hydrogen production were also studied in indoor and outdoor conditions using acetate as the carbon source. Temperature fluctuations and day/night cycles significantly decreased hydrogen production. It was found that the Hup mutant strain of R. capsulatus has better hydrogen productivity than the wild type parent in outdoor conditions.
Keywords: Biological hydrogen production; Rhodobacter capsulatus; Photofermentation; Dark fermentation; Acetate; Temperature (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S092134490900130X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:54:y:2010:i:5:p:310-314
DOI: 10.1016/j.resconrec.2009.06.002
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().