Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
H. Abu Qdais,
K. Bani Hani and
N. Shatnawi
Resources, Conservation & Recycling, 2010, vol. 54, issue 6, 359-363
Abstract:
Artificial neural networks (ANNs) and genetic algorithms (GA) are considered among the latest tools that are used to solve complicated problems that cannot be solved by conventional solutions. The present study utilizes the ANN and GA as tools for simulating and optimizing of biogas production process from the digester of Russaifah biogas plant in Jordan. Operational data of the plant for a period of 177 days were collected and employed in the analysis. The study considered the effect of digester operational parameters, such as temperature (T), total solids (TS), total volatile solids (TVS), and pH on the biogas yield. A multi-layer ANN model with two hidden layers was trained to simulate the digester operation and to predict the methane production. The performance of the ANN model is verified and demonstrated the effectiveness of the model to predict the methane production accurately with correlation coefficient of 0.87.
Keywords: Biogas; Digester; Waste; Artificial neural networks; Optimization; Genetic algorithms; Jordan (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S092134490900202X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:54:y:2010:i:6:p:359-363
DOI: 10.1016/j.resconrec.2009.08.012
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().