EconPapers    
Economics at your fingertips  
 

Evaluation of organic waste diversion alternatives for greenhouse gas reduction

Hiroko Yoshida, Joshua J. Gable and Jae K. Park

Resources, Conservation & Recycling, 2012, vol. 60, issue C, 1-9

Abstract: Greenhouse gas (GHG) emission analysis was performed for current and proposed organic waste management practices in the City of Madison, Wisconsin, United States of America (USA). Aiming for the long-term goal of zero waste, the City of Madison has been looking into an opportunity to divert its organic waste from its landfill. Previous studies suggested that organic waste diversion could result in a GHG emission reduction: Alternative treatment of organic waste would reduce GHG emissions through avoidance of landfill methane emission, nutrient replacement, and energy recovery when anaerobic digestion technologies are employed. However, organic waste diversion requires modification of collection practices and additions to the collection fleet. This would increase the GHG emissions and there is a need to balance emission reductions and the additional costs associated with a new organic waste diversion program. Collection practices are also important for the success of such a project, as it accounts for 83% of current operational cost for managing organic waste. The GHG emissions were quantified using the Life Cycle Assessment (LCA) approach. The current practice of composting of yard waste and direct disposal of other fractions of organic waste into the landfill were estimated to emit 224kgCO2-eq./ton of GHG. In contrast with the current practice, four alternatives were assessed in this study: windrow composting, high-solids anaerobic digestion, co-digestion at a large scale industrial waste anaerobic digester facility, and co-digestion at the local wastewater treatment plant. The results show that the co-digestion of source-separated organic waste would achieve the highest GHG emission reduction among the alternatives considered. The results were as follows: 81.5kgCO2-eq./ton for windrow composting; −46.0kgCO2-eq./ton for a high solids anaerobic digester; −156kgCO2-eq./ton for co-digestion with industrial waste; and −189kgCO2-eq./ton for co-digestion with sewage sludge. Co-digestion was favored as it shows the highest GHG emission reduction capacity while saving capital cost by almost half. However, the results of the GHG emission analysis were also affected by several factors external to the technologies chosen, including public participation, collection efficiency of organic waste, and types of waste collected. Based on the findings of this work, the party in charge of the organic waste diversion project should seek opportunities to partner with regional anaerobic digestion projects and local utilities, while continuing with its community outreach efforts.

Keywords: Organic waste diversion; Anaerobic digestion; Co-digestion; Organic fraction of municipal solid waste; Greenhouse gas accounting; Global warming; Waste-to-energy (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344911002448
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:60:y:2012:i:c:p:1-9

DOI: 10.1016/j.resconrec.2011.11.011

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:60:y:2012:i:c:p:1-9