Applying exergy analysis to rainwater harvesting systems to assess resource efficiency
M. Violeta Vargas-Parra,
Gara Villalba and
Xavier Gabarrell
Resources, Conservation & Recycling, 2013, vol. 72, issue C, 50-59
Abstract:
In our continued effort in reducing resource consumption, greener technologies such as rainwater harvesting could be very useful in diminishing our dependence on desalinated or treated water and the associated energy requirements. This paper applies exergy analysis and exergetic efficiency to evaluate the performance of eight different scenarios of urban rainwater harvesting systems in the Mediterranean-climate Metropolitan Area of Barcelona where water is a scarce resource. A life cycle approach is taken, where the production, use, and end-of-life stages of these rainwater harvesting systems are quantified in terms of energy and material requirements in order to produce 1m3 of rainwater per year for laundry purposes. The results show that the highest exergy input is associated with the energy uses, namely the transport of the materials to construct the rainwater harvesting systems. The scenario with the highest exergetic efficiency considers a 24 household building with a 21m3 rainwater storage tank installed below roof. Exergy requirements could be minimized by material substitution, minimizing weight or distance traveled.
Keywords: Exergy analysis; Rainwater harvesting; Exergetic efficiency; Environmental impact; Resource consumption (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344912002224
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:72:y:2013:i:c:p:50-59
DOI: 10.1016/j.resconrec.2012.12.008
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().