EconPapers    
Economics at your fingertips  
 

Material flow and industrial demand for palladium in Korea

Jeong Gon Kim

Resources, Conservation & Recycling, 2013, vol. 77, issue C, 22-28

Abstract: Material flow analysis (MFA) requires the use of reliable data. In intermediate or the end industries that lack field survey data or actual statistical data, the integrated material flow analysis methodology uses bottom–up flow analysis for primary and secondary resources, and top–down flow analysis for the distribution structure. By combining the advantages of the top–down and bottom–up methods, the Integrated Material flow Analysis Methodology (IMFAM) can overcome the limitations of each methodology. Using the IMFAM, this study surveyed the material flow of palladium, and a platinoid element used in Korea. Palladium is produced as a byproduct in the copper refining process in Korea, and about 80% of used palladium as a three-way catalyst (TWC), i.e., an exhaust gas purifying system for automobiles. As automobile production in Korea is expected to continually increase, the usage of palladium is also expected to increase. Moreover, the increase in the use of printed circuit board (PCB) plating solutions is expected to further increase the use of palladium.

Keywords: Palladium; Platinum group metals; Material flow analysis (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344913000967
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:77:y:2013:i:c:p:22-28

DOI: 10.1016/j.resconrec.2013.04.009

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:77:y:2013:i:c:p:22-28