EconPapers    
Economics at your fingertips  
 

Reliability analysis of rainwater tanks using daily water balance model: Variations within a large city

Monzur Alam Imteaz, Amimul Ahsan and Abdallah Shanableh

Resources, Conservation & Recycling, 2013, vol. 77, issue C, 37-43

Abstract: A daily water balance model is used for the performance analysis and design optimisation of rainwater tanks at four different regions of Melbourne; North, Central, South-East and South-West. These four different regions of Melbourne are characterised by notable different topography and rainfall characteristics. From historical rainfall data, three representative years (dry, average and wet) are selected. Reliability is defined as percentage of days in a year when rainwater tank is able to supply the intended partial demand for a particular condition. For the three climatic conditions, a number of reliability charts are produced for domestic rainwater tanks in relation to tank volume, roof area and number of people in a house (i.e. water demand). It is found that for a relatively small roof size (100m2), 100% reliability cannot be achieved even with a very large tank (10,000L). Reliability becomes independent of tank size for tank sizes larger than 4000–7000L depending on the location. This is defined as threshold tank size, relationships with threshold tank sizes and annual rainfall amounts are then established for all the locations. A new factor named ‘Rainwater Accumulation Potential (RAP)’ has been introduced and maximum achievable reliabilities for different reasonable RAPs under different climatic conditions are presented for all the locations selected in this study. From these findings, for the design of rainwater tank size it is recommended to have a RAP value of 0.8–0.9 for greater Melbourne.

Keywords: Rainwater tank; Daily water balance; Climatic conditions; Reliability; Threshold tank size (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344913001158
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:77:y:2013:i:c:p:37-43

DOI: 10.1016/j.resconrec.2013.05.006

Access Statistics for this article

Resources, Conservation & Recycling is currently edited by Ming Xu

More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().

 
Page updated 2025-03-19
Handle: RePEc:eee:recore:v:77:y:2013:i:c:p:37-43