Implications for the carrying capacity of lithium reserve in China
Xianlai Zeng and
Jinhui Li
Resources, Conservation & Recycling, 2013, vol. 80, issue C, 58-63
Abstract:
China is a major supplier of rechargeable lithium batteries for the world's consumer electronics (CE) and electric vehicles (EV). Consequently, China's domestic lithium resources are being rapidly depleted, and the development of the CE and EV industries will be vulnerable to the carrying capacity of China's lithium reserves. Here we find that lithium demand in China will increase significantly due to the continuing growth of demand for CE and the briskly emerging market for EV, resulting in a short carrying duration of lithium, even with full recycling of end-of-life lithium products. With these applications increasing at an annual rate of 7%, the carrying duration of lithium reserves will oblige the end-of-life products recycling with a 90% rate. To sustain the lithium industry, one approach would be to develop the collection system and recycling technology of lithium-containing waste for closed-loop lithium recycling, and other future endeavors should include developing the low-lithium battery and optimizing lithium industrial structure.
Keywords: Lithium; Carrying capacity; China; Recycling; Implications (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0921344913001791
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:recore:v:80:y:2013:i:c:p:58-63
DOI: 10.1016/j.resconrec.2013.08.003
Access Statistics for this article
Resources, Conservation & Recycling is currently edited by Ming Xu
More articles in Resources, Conservation & Recycling from Elsevier
Bibliographic data for series maintained by Kai Meng ().