Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports
Abdollah Shafieezadeh and
Lindsay Ivey Burden
Reliability Engineering and System Safety, 2014, vol. 132, issue C, 207-219
Abstract:
A number of metrics in the past have been proposed and numerically implemented to assess the overall performance of large systems during natural disasters and their recovery in the aftermath of the events. Among such performance measures, resilience is a reliable metric. This paper proposes a probabilistic framework for scenario-based resilience assessment of infrastructure systems. The method accounts for uncertainties in the process including the correlation of the earthquake intensity measures, fragility assessment of structural components, estimation of repair requirements, the repair process, and finally the service demands. The proposed method is applied to a hypothetical seaport terminal and the system level performance of the seaport is assessed using various performance metrics. Results of this analysis have shown that medium to large seismic events may significantly disrupt the operation of seaports right after the event and the recovery process may take months. The proposed framework will enable port stakeholders to systematically assess the most-likely performance of the system during expected future earthquake events.
Keywords: Resilience assessment; Seaport infrastructure systems; Fragility analysis; Earthquakes (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014001768
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:132:y:2014:i:c:p:207-219
DOI: 10.1016/j.ress.2014.07.021
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().