EconPapers    
Economics at your fingertips  
 

Improved metamodel-based importance sampling for the performance assessment of radioactive waste repositories

F. Cadini, A. Gioletta and E. Zio

Reliability Engineering and System Safety, 2015, vol. 134, issue C, 188-197

Abstract: In the context of a probabilistic performance assessment of a radioactive waste repository, the estimation of the probability of exceeding the dose threshold set by a regulatory body is a fundamental task. This may become difficult when the probabilities involved are very small, since the classically used sampling-based Monte Carlo methods may become computationally impractical. This issue is further complicated by the fact that the computer codes typically adopted in this context requires large computational efforts, both in terms of time and memory. This work proposes an original use of a Monte Carlo-based algorithm for (small) failure probability estimation in the context of the performance assessment of a near surface radioactive waste repository. The algorithm, developed within the context of structural reliability, makes use of an estimated optimal importance density and a surrogate, kriging-based metamodel approximating the system response. On the basis of an accurate analytic analysis of the algorithm, a modification is proposed which allows further reducing the computational efforts by a more effective training of the metamodel.

Keywords: Radioactive waste repositories; Small failure probabilities; Monte Carlo; Metamodeling; Importance sampling (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832014002580
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:134:y:2015:i:c:p:188-197

DOI: 10.1016/j.ress.2014.10.018

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:134:y:2015:i:c:p:188-197