Estimation of rare event probabilities in power transmission networks subject to cascading failures
Francesco Cadini,
Gian Luca Agliardi and
Enrico Zio
Reliability Engineering and System Safety, 2017, vol. 158, issue C, 9-20
Abstract:
Cascading failures seriously threat the reliability/availability of power transmission networks. In fact, although rare, their consequences may be catastrophic, including large-scale blackouts affecting the economics and the social safety of entire regions. In this context, the quantification of the probability of occurrence of these events, as a consequence of the operating and environmental uncertain conditions, represents a fundamental task. To this aim, the classical simulation-based Monte Carlo (MC) approaches may be impractical, due to the fact that (i) power networks typically have very large reliabilities, so that cascading failures are rare events and (ii) very large computational expenses are required for the resolution of the cascading failure dynamics of real grids. In this work we originally propose to resort to two MC variance reduction techniques based on metamodeling for a fast approximation of the probability of occurrence of cascading failures leading to power losses. A new algorithm for properly initializing the variance reduction methods is also proposed, which is based on a smart Latin Hypercube search of the events of interest in the space of the uncertain inputs. The combined methods are demonstrated with reference to the realistic case study of a modified RTS 96 power transmission network of literature.
Keywords: Power transmission networks; Cascading failures; Rare event probabilities; Monte Carlo; Kriging; Latin Hypercube (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832016305440
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:158:y:2017:i:c:p:9-20
DOI: 10.1016/j.ress.2016.09.009
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().