Controlling the accuracy and uncertainty trade-off in RUL prediction with a surrogate Wiener propagation model
Yingjun Deng,
Alessandro Di Bucchianico and
Mykola Pechenizkiy
Reliability Engineering and System Safety, 2020, vol. 196, issue C
Abstract:
In modern industrial systems, sensor data reflecting the system health state are commonly used for the remaining useful lifetime (RUL) prediction, which are increasingly processed by modern deep learning based approaches recently. But these deep learning models do not automatically provide uncertainty information for the RUL prediction, hence this paper is motivated to introduce a novel approach that allows to control trade-off between prediction performance and knowledge about the uncertainty of the RUL prediction. The key aspect of our approach is to use a long short-term memory (LSTM) network as an expressive black-box predictor and the Wiener process as a surrogate to model the propagation of prediction uncertainty. The uncertainty propagation model is used to interactively train the RUL predictor. Our empirical results in a turbofan engine degradation simulation use case show that the surrogate Wiener propagation model can improve the near-failure prediction accuracy by sacrificing the far-to-failure prediction accuracy.
Keywords: Remaining useful lifetime; Uncertainty propagation; Recurrent neural network; Long short-term memory; Wiener process; Surrogate modeling (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832019301723
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:196:y:2020:i:c:s0951832019301723
DOI: 10.1016/j.ress.2019.106727
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().