EconPapers    
Economics at your fingertips  
 

Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)

Yeongmin Yoo, Ui-Jin Jung, Yong Ha Han and Jongsoo Lee

Reliability Engineering and System Safety, 2021, vol. 206, issue C

Abstract: Owing to uncertainty factors present in the system, computer-aided engineering (CAE) models suffer from limitations in terms of accuracy of test model representation. This paper proposes a new predictive model, termed designable generative adversarial network (DGAN), which applies the Inverse generator neural network to GAN, one of the methods employed for data augmentation. Statistical model-based validation and calibration technology, employed for improving the accuracy of a predictive model, is used to compare the prediction accuracy of the DGAN. Statistical model-based technology can construct a predictive model through calibration between actual test data and CAE data by considering uncertainty factors. However, the achievable improvement in prediction accuracy is limited, depending on the degree of approximation of the CAE model. DGAN can construct a predictive model through machine learning using only actual test data, improve the prediction accuracy of an actual test model, and present design variables that affect the response data, which is the output of the predictive model. The performance of the proposed prediction model was evaluated and verified, as a case study, through a numerical example and system level vehicle crash test model including parameter uncertainties.

Keywords: Statistical model validation and calibration; Data augmentation; Generative adversarial networks; Inverse generator; Predictive model; Vehicle crash test (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832020308103
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:206:y:2021:i:c:s0951832020308103

DOI: 10.1016/j.ress.2020.107316

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:206:y:2021:i:c:s0951832020308103