EconPapers    
Economics at your fingertips  
 

Adaptive use of replicated Latin Hypercube Designs for computing Sobol’ sensitivity indices

Guillaume Damblin and Alberto Ghione

Reliability Engineering and System Safety, 2021, vol. 212, issue C

Abstract: As recently pointed out in the field of Global Sensitivity Analysis (GSA) of computer simulations, the use of replicated Latin Hypercube Designs (rLHDs) is a cost-saving alternative to regular Monte Carlo sampling to estimate first-order Sobol’ indices. Indeed, two rLHDs are sufficient to compute the whole set of those indices regardless of the number of input variables. This relies on a permutation trick which, however, only works within the class of estimators called Oracle 2. In the present paper, we show that rLHDs are still beneficial to another class of estimators, called Oracle 1, which often outperforms Oracle 2 for estimating small and moderate indices. Even though unlike Oracle 2 the computation cost of Oracle 1 depends on the input dimension, the permutation trick can be applied to construct an averaged (triple) Oracle 1 estimator whose great accuracy is presented on a numerical example.

Keywords: Sobol’ indices; Replicated Latin Hypercube Designs; Spurious correlation; Sensitivity Analysis; Oracle 2 estimators; Oracle 1 estimators; Nuclear application (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021000697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021000697

DOI: 10.1016/j.ress.2021.107507

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021000697