EconPapers    
Economics at your fingertips  
 

Dynamic emergency inspection routing and restoration scheduling to enhance the post-earthquake resilience of a highway–bridge network

Zhenyu Zhang, Tingting Ji and Hsi-Hsien Wei

Reliability Engineering and System Safety, 2022, vol. 220, issue C

Abstract: In the immediate aftermath of earthquakes, effective scheduling of emergency restoration for transportation networks depends fundamentally on information about damage to those networks, which for the most part can only be acquired via a lengthy process of inspection. This paper proceeds from the insight that, rather than waiting to commence restoration activities until after all inspection activities are completed, damage information revealed gradually via inspection efforts could be incorporated into parallel scheduling of inspection routes and restoration schedules, allowing inspection and restoration to occur simultaneously, thus more efficiently boosting transportation networks’ resilience. To achieve this, however, it will be necessary to understand the real-time interaction between inspection and restoration, as well as such interaction's impacts on the inspection-routing and restoration-scheduling process. Assuming that multiple inspection and restoration crews operate simultaneously and that their optimal routes and schedules are updated dynamically whenever additional inspection information is obtained, this study proposes an integer program for modeling inspection-routing and restoration-scheduling problems and determining the optimal inspection routes and restoration schedules for damaged highway–bridge networks, with the specific aim of maximizing a resilience measure, network travel time. The results of a case study using the proposed method and data from the 2008 Wenchuan Earthquake in China show that, as compared to a traditional inspection-restoration model, simultaneously performing and dynamically scheduling inspection and restoration can significantly boost networks’ resilience.

Keywords: Emergency disaster recovery; Dynamic scheduling; Transportation restoration scheduling; Transportation-network resilience; Seismic risk (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832021007547
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007547

DOI: 10.1016/j.ress.2021.108282

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007547