Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints
Parth Bansal,
Zhuoyuan Zheng,
Chenhui Shao,
Jingjing Li,
Mihaela Banu,
Blair E Carlson and
Yumeng Li
Reliability Engineering and System Safety, 2022, vol. 227, issue C
Abstract:
Jointing techniques like the Self-Piercing Riveting (SPR), Resistance Spot Welding (RSW) and Rivet-Weld (RW) joints are used for mass production of dissimilar material joints due to their high performance, short cycle time, and adaptability. However, the service life and safety usage of these joints can be largely impacted by the galvanic corrosion due to the difference in equilibrium potentials between the metals with the presence of electrolyte. In this paper, we focus on Al-Fe galvanic corrosion and develop physics-informed machine learning based surrogate model for statistical corrosion analysis, which enables the reliability analysis of dissimilar material joints under corrosion environment. In this study, a physics-based finite element (FE) corrosion model has been developed to simulate the galvanic corrosion between a Fe cathode and an Al anode. Geometric and environmental factors including crevice gap, roughness of anode, conductivity, and the temperature of the electrolyte are investigated. Further, a thorough Uncertainty Quantification (UQ) analysis is conducted for the overall corrosion behavior of the Fe-Al joints. It is found that the electrolyte conductivity has the largest effects on the material loss and needs to be managed closely for better corrosion control. This will help in designing and manufacturing joints with improved corrosion performance.
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832022003362
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:227:y:2022:i:c:s0951832022003362
DOI: 10.1016/j.ress.2022.108711
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().