EconPapers    
Economics at your fingertips  
 

Multicanonical sequential Monte Carlo sampler for uncertainty quantification

Robert Millar, Hui Li and Jinglai Li

Reliability Engineering and System Safety, 2023, vol. 237, issue C

Abstract: In many real-world engineering systems, the performance or reliability of the system is characterised by a scalar variable. The distribution of this performance variable is important in many uncertainty quantification problems, ranging from risk management to utility optimisation. In practice, this distribution usually cannot be derived analytically and has to be obtained numerically by simulations. To this end, standard Monte Carlo simulations are often used, however, they cannot efficiently reconstruct the tail of the distribution which is essential in many applications. One possible remedy is to use the Multicanonical Monte Carlo method, an adaptive importance sampling scheme. In this method, one draws samples from an importance sampling distribution in a nonstandard form in each iteration, which is usually done via Markov chain Monte Carlo (MCMC). MCMC is inherently serial and therefore struggles with parallelism. In this paper, we present a new approach, which uses the Sequential Monte Carlo sampler to draw from the importance sampling distribution, which is particularly suited for parallel implementation. With both mathematical and practical examples, we demonstrate the competitive performance of the proposed method.

Keywords: Multicanonical Monte Carlo; Sequential Monte Carlo sampler; Rare event simulation; Uncertainty quantification (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023002302
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002302

DOI: 10.1016/j.ress.2023.109316

Access Statistics for this article

Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares

More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002302