A novel bearing fault diagnosis method based joint attention adversarial domain adaptation
Pengfei Chen,
Rongzhen Zhao,
Tianjing He,
Kongyuan Wei and
Jianhui Yuan
Reliability Engineering and System Safety, 2023, vol. 237, issue C
Abstract:
Recently, many unsupervised domain adaptation methods based on a metric distance or adversarial training do not consider whether the feature representations can be transferred or not. To overcome this challenge, we explore developing a novel approach named joint attention adversarial domain adaptation (JAADA). Specifically, the extracted features are first manually divided into numbers of feature regions. Second, MMD is introduced to mitigate the distribution discrepancy in separated segment features. Furthermore, different weights obtained by the attention mechanism and MMD values have been assigned to different regions. Finally, local and global attention has been fused into one unified adversarial domain adaptation framework. A series of comprehensive experiments on four fault datasets validate that the proposed method has a superior convergence and could boost 1.9%, 3.0%, 2.1%, and 3.5% accuracy than the state-of-the-art methods, respectively.
Keywords: Bearing fault diagnosis; Adversarial domain adaptation; Attention mechanism (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0951832023002594
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002594
DOI: 10.1016/j.ress.2023.109345
Access Statistics for this article
Reliability Engineering and System Safety is currently edited by Carlos Guedes Soares
More articles in Reliability Engineering and System Safety from Elsevier
Bibliographic data for series maintained by Catherine Liu ().